
PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

PragmaDev
change request

Emmanuel Gaudin

emmanuel.gaudin@pragmadev.com

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

Table of contents

• PragmaDev introduction

• Languages

• SDL-RT

• Tool support

• Market tendancy

• Change requests

Languages

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

PragmaDev

Message queue

• All applications running on a
Real Time Operating System

• Decomposed in tasks running
concurrently

• Communicating through
• Messages
• Interrupts
• Function calls
• Semaphores

Semaphorehardware
RTOS

Application

Module 1 Module 2 Module 3

dr
iv

er

dr
iv

er

Dedicated to the development of a case tool for the development of
real time and embedded software.

Presentation

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

State of the art

• C language is predominant (75%)

• C++ has been introduced in non real time parts of

embedded (40%)

• Assembler (40%)

• Java is experienced in niches (less than 5%)

• 90% of the real time development projects use no

graphical tool

Languages

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

Existing languages
• SDL (Specification and Description Language) and MSC (Message Sequence

Chart) are ITU (International Telecommunication Union) standards.
• Event oriented,
• Used by ETSI to standardize telecommunication protocols,
• Graphical,
• Formal (complete and non-ambiguous), e.g. allows to fully describe the

system,
• Object oriented,

• UML (Unified Modeling Language) standardized by the OMG (Object
Management Group).

• Can be used to represent any type of systems,
• Graphical,
• Used at a pretty high level of abstraction,
• Not formal, e.g. another language is necessary to describe in detail (C,

C++, Java, SDL),
• Very object oriented.

Languages

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

Languages positioning

UMLUML

SDLSDL

CCC++C++ JavaJava SQLSQL

Analysis

Specification

Design

GUI Web Real
time

DB
Real
time

Languages

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

No real time specificity in UML

• UML has no graphical representation for classical real time
concepts such as: tasks, semaphores, messages, timers…

• UML is adapted to C++ for static data representation.

• Deployment diagram perfect for distributed systems.

• In practice UML models are not synchronized with the design.

Languages

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

Will UML2.0 help ?

• UML 2.0 allows to define domain specific profiles but
does not define any

Will a real time profile be defined ?

Meanwhile UML 2.0 models will probably not be
portable from one tool to another and have specific
notations

Languages

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

UML 2.0 trend

• UML 2.0 Sequence diagram has integrated most of the
features of the SDL Message Sequence Chart

• UML 2.0 structural diagram is equivalent to the SDL block
diagram

Interesting things come from SDL

Languages

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

SDL: the perfect picture
• SDL graphical abstractions (architecture, communication,

behavior) improve quality, reduce development time, ease
maintenance:

Development time is globally reduced by 35%

Number of mistakes per 1000 lines is 5 times less than C
code

• SDL being formal, it is possible to simulate the system
behavior on host with graphical debugging facilities.

• SDL being formal, full code generation is possible.

• SDL being object oriented, software components are reusable
(ETSI telecommunication protocol standards fully use object
orientation).

Languages

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

SDL: the reality

• All existing software modules (RTOS, drivers, legacy code) provide C
APIs, not SDL,

• Some classical real time concepts are not present in SDL such as
pointers and semaphores,

• SDL syntax is not suited for design.

Integration with legacy code is difficult,

Integration with COTS components is tricky (driver or RTOS),

Developers are frustrated,

Generated code is not legible,

Languages

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

The technical solution: SDL-RT
SDL-RT is just the habits and

usage in the industry when
using SDL

• Keep UML diagrams at high level during
analysis and requirements

• Keep the SDL graphical abstraction
(architecture, communication, behavior).

• Introduce C data types and syntax
instead of SDL’s.

• Remove SDL concepts having no
practical implementation.

• Extend SDL to deal with uncovered real
time concepts (interrupts, semaphores).

UMLUML

SDLSDL

C
C++
C

C++

Analysis

Specification

Design

Real
time

SDL-RT

Languages

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

SDL-RT

SDL-RT is:

• Available from http://www.sdl-rt.org for free,

• Legible,

• Based on a standardized textual format (XML).

Languages

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

SDL-RT: 6 views

Relations
between static
classes (C++)
and dynamic
classes (SDL)

Languages

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

SDL-RT: 6 views
Architecture

and
Communication

Languages

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

SDL-RT: 6 views

Behavior
and
Data

Process A

Languages

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

SDL-RT: 6 views

A semaphore
take

A timer is started

When the timer
goes off

A semaphore
give

SDL-RT state

Another
behavior
example

Languages

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

SDL-RT: 6 views

Physical
deployment

Languages

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

SDL-RT: graphical representations

• Library of components

• System architecture

• Interface definitions

• Application deployment

• Real time concepts

• Key points in the design

Languages

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

SDL-RT MSC: dynamic view
SDL-RT Message Sequence Chart

• Vertical lines represent a task,
the environment or a
semaphore,

• Arrows represent message
exchanges, semaphore
manipulations or timers.

Can be used:

• As specification

• Execution traces

Languages

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

RTDS: supported languages

UML

C
C++

Analysis

Specification

Design

SDL-RT
SDL
Z.100

Tool support

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

RTDS: supported languages
UML

• Editors

• C++ stubs generator

SDL Z.100

• Editors

• Syntaxic et semantics checker

• Simulator

SDL-RT

• Editors

• Syntax et semantics checker

• Code generator

• Graphical debugger

Tool support

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

SDL Z.100
simulator

An SDL Z.100

graphical debugger

• Breakpoints, stepping, in
the SDL diagrams,

• Externally defined or
interactive operator
calls,

• Dynamic MSC traces,

• Connecting an external
tool is possible through a
socket.

Tool support

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

Tools: The SDL-RT debugger

• Breakpoints, stepping,
in the SDL/RT
diagrams or in the
generated C files,

• Dynamic MSC traces,

• Connecting an
external tool is
possible through a
socket.

Debug at SDL-RT
level:

Tool support

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

SDL usage trend

Market tendancy

• Specificiers stick to
SDL Z.100

• Designers switch to
SDL-RT

Active SDL users

Let’s try to have the active SDL users stick to SDLLet’s try to have the active SDL users stick to SDL

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

Z.109

• The first Z.109 version used UML extension mechanisms to
translate a UML model into an SDL model.

That ended up in a UML model that was as rich and
specialized as an SDL system.

In the end either the UML or the SDL system was useless !

And that made UML and SDL competitors…

• Z.109 should focus on the natural complementary aspects of the
2 languages and try to avoid equivalence.

• Z.109 will probably the only standardized UML profile for
telecommunication systems

Change requests

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

Open up to other data types and
syntax

• SDL data types are not suited for design

No SDL compiler / debugger

High level features (assignment, comparison) support

requires to generate data manipulation functions or macros

Integration problems with legacy code, other modules,

RTOS…

Missing concepts such as pointers

Change requests

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

Open up to other data types and
syntax

The best would be to support any other data type and syntax

C/C++

ADA

…

If not suited to open on any data type, C/C++ support is the

best opening

Change requests

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

Priorities

• SDL has the concept of signal with priority but does not support

priority on process

• RTOS support priority on tasks but not on messages

• Priority is very usefull when designing a telecommunication or a

real time system

Priority on SDL process instances could be an extension; if

omitted the SDL system behaves like before.

Change requests

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

Scheduling

• Scheduling policy is undefined in SDL

Making validation of SDL systems is pretty difficult

Behavior might be different during simulation and on

target

Scheduling should be definable in order to have a

representative simulation of the final system and ease

validation

Combined with priorities the behavior will be closer to the one

found on an operating system

Change requests

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

Semaphores

• Semaphores are one of the key synchronization mechanism in

real time systems

• SDL is seen as a telecommunication language restricted to

protocols

Introducing semaphores would extend SDL usage to any

application based on a real time operating system

Introducing extension mechanism to add semantic aspects

similar to the one found in UML (example: timer freeze)

Change requests

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

Define a meta-model for SDL

• The standard seems to gather a lot of concepts without any

global organisation

• The standard is not naturally open to extensions

Defining a meta-model would help to organise the standard,

make it more consistent, and easy to open to extensions.

Change requests

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

Timers

• There is no graphical symbol to start or cancel a timer

• There is a graphical symbol to receive a timer signal

Introduce a start timer symbol

Introduce a cancel timer symbol

Start timer suggestion Cancel timer suggestion

Change requests

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

Improve object orientation

• A specialized agent can not call the super-class transition

• Specializing a transition usually means adding treatment to the

inherited one; not replacing it

Introduce a super transition call symbol

The super class next state can be used

Change requests

PragmaDev ITU-T SG17 change request Grimstad June 24, 2005

Simplification suggestions

Procedure should not be able to see the variables of the

PARENT (not the caller)

Remote procedure concept should be removed because it

implies discrepancies in the standard:

• Synchronous call in an asynchronous environment ?

• Which procedure is called when several instances of the

PARENT procedure ?

• The procedure caller can modify the remote procedure

PARENT variables !

Are VIRTUAL and REDEFINED syntax usefull ?

Change requests

