
White paper
XMI, a -not so-
standard exchange
format
XMI is a file format to exchange models from a UML tool
to another. Although it has been standardized, its imple-
mentations does not reach the expectations. There is still
quite some work to do in order to exchange UML models
properly.

As electronic systems are getting more and more
present in our everyday's life, the implied complexity of
the embedded software is calling for an efficient model-
ing technology. Before designing a real system, model-
ing is about working on an abstract representation of the
real implementation. Such a model can be used for doc-
umentation or to run a number of verifications very early
in the development process.

UML -a merge of several object oriented modeling lan-
guages- is a possible candidate for modeling. It has a
« model centric » approach meaning the diagrams are
partial views of the same model, and an element of the
model can be present in several diagrams. The model is
the reference and the diagrams are derived from the
model. This approach is to be compared with « diagram
centric » languages such as SDL for example in which
the model is implied by the diagrams.

The UML model representation is standardized and
relies on a meta-model called the MOF (Meta Object
Facility). In order to exchange models from one tool to
another, UML models are to be exported and imported in
XMI format (XML Metadata Interchange). XMI is a stan-
dardized textual representation of the model as
described by the MOF. As we previously explained, in
UML the model is the reference, that is why there was no
graphical information relative to the diagrams in the first
versions of XMI.

Version 1 of UML had a very generic approach making it
impossible to make a detailed description of a system
whatever the application domain was. Version 2 now
allows to define profiles to specialize the modeling lan-
guage for a specific application domain. The model is
more precise and therefore tools can offer simulation,
verification, or code generation capabilities. For the time
being, two real time profiles have been standardized:
Z.109 profile based on SDL for communicating systems,
and MARTE profile for system level modeling. Version 2
of XMI includes the description of the profile associated
to the model but it is important to note exchanging a
model with its profile is very often not possible as tools
generally support only one profile, that is very often pro-
prietary.

As we were writing a UML import module based on XMI,
it appeared the exchange format could lead to interpreta-
tion and that files exported from different tools could be
conform to the standard but incompatible with each
other. Let's take a very simple example: a class diagram
with two classes and an association relation between
them.

From the same diagram, here are two XMI files coming
from different commercial tools.

<uml:Model xmi:type="uml:Model" name=" Model" visibility="public">
 <packagedElement xmi:type="uml:Package" xmi:id="1" name="MyPackage2" visibility="public">
 <packagedElement xmi:type="uml:Class" xmi:id="2" name="Tata" visibility="public"/>
 <packagedElement xmi:type="uml:Class" xmi:id="3" name="Toto" visibility="public"/>
 <packagedElement xmi:type="uml:Association" xmi:id=”4" memberEnd="2 3" />
 </packagedElement>
</uml:Model>

<uml:Model xmi:type="uml:Model" name=" Model" visibility="public">
 <packagedElement xmi:type="uml:Package" xmi:id="1" name="MyPackage2" visibility="public">
 <packagedElement xmi:type="uml:Class" xmi:id="2" name="Tata" visibility="public"/>
 <packagedElement xmi:type="uml:Class" xmi:id="3" name="Toto" visibility="public"/>
 <packagedElement xmi:type="uml:Association" xmi:id="4" visibility="public">
 <memberEnd xmi:idref="2"/>
 <memberEnd xmi:idref="3"/>
 </packagedElement>
 </packagedElement>

White paper
The first tag uml:Model indicates it is a UML model. The
second tag packagedElement with Package attribute
defines the package containing the two classes. The
third and fourth tags with Class attribute describe the two
classes inside the package. At last, the fifth tag with
Association attribute describes the association between
the two tags. But in order to designate the connection at
the ends of the association, one tool will use the mem-
berEnd attribute and list the two identifiers, while the
other tool will use the memberEnd tag for each end of
the association with the idref attribute to identify the
classes.

Fondamental differences in the export file organization
appear on that very basic example. Exchange of this
model between these two tools is obviously not possible.

As explained above the graphical information regarding
the symbol placement in the diagrams are not exported,
only the model itself is exported. But the same model
can be described with very different diagrams and the
graphical layout can ease the understanding of the
model. The following models have different layouts but
will actually produce the same XMI file.

The lack of graphical information is obviously a real loss
when exchanging even simple models, not to say mod-
els based on different profiles.

As version 1 of UML seemed to be a converging point for
modeling languages, version 2 has lead to the creation
of multiple proprietary profiles very often undocumented.
Very recenlty new domain specific modeling languages
have appeared such as, AADL in the space and avionic
industry, or Autosar in the automotive industry, that do
not come from UML. Portability from one tool to another
and ambiguities within the XMI format make basic UML
model exchange difficult and any avanced or profile
based model unrealistic.

Charles Castelli
Laboratoire COSI - ESIEE-Paris

Emmanuel Gaudin
PragmaDev

Copyright 2009

Three representations of the same model

+

