
29
April 2005

MODEL-BASED DESIGN

Solving problems of SDL and UML
for real-time software design

� SDL, the “Specification and Description
Language”, has been defined by the Internation-
al Telecommunication Union (ITU) in order to
describe telecommunication protocols. Experi-
ence has shown its basic principles could be
extended to a lot of other fields mainly because
of its graphical functional approach allowing to
describe architecture and behaviour of the
system. But when it comes to implementation
and integration on target, the SDL data types
and some of its high level concepts turn into a
problem for the developers because they lose
control of the final target code. Furthermore,
some real-time aspects such as semaphores and
pointers, were not covered in the language so
most of the SDL developers started to write C
inside the SDL graphical representations. Be-
cause there were no tools supporting this com-
bination, they had to write their own C code
generator out of this mix of SDL and C. All
these problems prevented SDL from being
widely spread. That is what SDL-RT is solving
while it also includes some of the UML trend.

Real-time and embedded software are based on
real-time operating systems or schedulers in
which the basic structural element is the task.
Several tasks execute concurrently in order to
fulfil a basic function and these basic functions
are gathered to realize more complex functions
and so on up to the whole application. It ap-
peared the SDL architecture gathering tasks in

functional blocks that could themselves be
gathered in higher level blocks was a good way
to graphically represent the architecture of any
real-time system. The architecture is then com-
pleted with the description of the interfaces be-
tween the different functions of the system. An
interface is defined by an exchange format
based on structured data, and a scenario
describing the sequence of exchanges. SDL sig-
nals come with typed parameters based on ab-
stract data types (ADT) allowing a full
description of the static interface. Message
sequence charts (MSC) standardized within the
same ITU series provide a graphical
representation of the dynamic aspect of the
information exchanged within the system or
with external modules such as drivers.

Real-time systems are based on independent
tasks running concurrently, so it is very impor-
tant not to waste CPU time whenever the task
has nothing to do. That led most real-time ap-
plications to be based on finite state ma-
chines where the basic principle is to wait on
an RTOS object such as a message queue as
soon as the task has finished its job. Once
more, the SDL finite state machines were
well-suited to describe that kind of behaviour
graphically. Last but not least, SDL is object-
oriented at all graphical levels since its '92 ver-
sion so it is possible to build up libraries of
software components that can be specialized.

On paper SDL appears to be an optimized lan-
guage for specification and design of real-time
systems, but the technical reality is quite differ-
ent. When it comes to design, SDL abstract data
types (ADT) become a hurdle for several rea-
sons. The syntax to manipulate ADTs has been
defined to specify protocols, not to design them.
Software designers get into trouble not having
the precision they used to have with tradition-
al programming languages such as C. There are
no SDL compilers or cross-compilers on the
market so C or C++ code generation is neces-
sary to implement the SDL system on target.
ADTs are based on concepts that cannot be
directly translated in C or C++ so specific op-
erators must be generated making the generat-
ed code unreadable. Integration of legacy code
is difficult because a bridge needs to be setup
between the SDL data types and the C or C++
data types.

When it comes to integrating the code generat-
ed out of an SDL system onto an RTOS, some
SDL semantic aspects are not directly support-
ed. Let's take two simple examples. The SDL
priority concept applies on messages while
RTOS priority concept applies on tasks. SDL se-
mantic considers that an automaton transition
can-not be interrupted while an RTOS could
actually interrupt execution at any time, espe-
cially if system calls occur during the transition
involving tasks with different priority levels. In

by Emmanuel Gaudin, PragmaDev

The use of SDL and UML
for the design of

real-time software is
accompanied by

different problems.
SDL-RT benefits from

the maturity of C and
SDL but also from the

visibility of UML so
that an SDL-RT-based

tool can solve these
problems. Figure 1. SDL-RT offers graphical

representation for sending and
receiving messages, as well as taking
and freeing semaphores



MODEL-BASED DESIGN

30
April 2005

order to guarantee that the generated code be-
haves as specified, an SDL virtual machine must
be generated, making integration on target very
tricky and access to some RTOS services almost
impossible. The concept of semaphore does not
exist in SDL while it is one of the most classical
synchronization mechanisms in real-time
applications. This is due to the fact that SDL has
been defined to specify protocols to communi-
cate with remote entities so the concept of
semaphores could not be used.

For all the above reasons and in order to imple-
ment systems described in SDL, tools became
extremely complex to manipulate, very expen-
sive, and required long training sessions as well
as highly skilled consultants to get the system to
work on the target. In the end all the benefits of
using a graphical language were lost during
integration on target. The main reason for that
situation was that tool vendors wanted to
abide by the standard whatever the technical
problems implied.

In the field, SDL users started to write C code
inside their SDL diagrams and broke up the
SDL semantic to fit technical reality. But since
this mix of C and SDL was not supported by
the tools on the market (because not conform-
ing to the official standard) these very same
users developed their own tool chains. The re-
sult is that every major telecommunication
manufacturer has its own internal C code
generator out of this mix of SDL and C, namely
Alcatel, Nokia, Nortel, EADS and Sagem. The
first SDL-RT release aimed at formalizing the
industrial habits of mixing C code within SDL
graphical representations. In order to extend
the usage of such a language to all real-time ap-

plications, SDL-RT also introduced graphical
symbols to handle semaphores.

The Unified Modelling Language (UML) – as
its name states – is a merger of several represen-
tations. Its main objective was to document ap-
plication and to ease communication among all
the people involved in a software development.
Since its first release in 1997, with the help of
strong marketing, UML has spread quite quick-
ly in a large number of areas. This language is
characterized by its full object-oriented
approach where any element of any system is
basically described as a class. This generic ap-
proach provides a very high level of abstraction
so that it can be applied to any concept. On the
other hand UML is not dedicated to any appli-
cation domain and is not precise enough to
describe applications in detail. As a matter of
fact, it is mostly used during the early analysis
or specification phase. The weak link between
the UML diagrams and the design raises two re-
curring problems: synchronization between
the UML documentation and the final code,
and a lack of a structuring framework to drive
the development process. These problems
could actually explain the success of UML by
the fact that development teams could actual-
ly still work as they used to, and document in-
dependently with this language. The benefits of
such a usage are very limited and that is why
some large companies have decided to stop
making UML mandatory.

In the real-time domain only the class diagram,
the sequence diagram, and the state chart are
used among the nine diagrams available in the
version 1.x of the standard. Since UML tools are
basically drawing tools with very limited code
generation possibilities, they are much more
affordable than the ones based on SDL. That
also helped the technology to spread.

Several experiences of intensive usage of the
language within large development teams even-
tually ended in to disaster. From the fact that
the tools were generating an oversized code
with low performance and no debug on target
facilities, tools and methods managers raised a
major question: is a full object-oriented ap-
proach applicable in the real-time and embed-
ded domains where the traditional way is
functional? Difficult to give a straight answer to
such a question, but it appears that successful
object-oriented developments have initially
started with a functional approach and then
factored in components organized in libraries
in order to be re-used later. The UML market-
ing strength was so strong that SDL had to re-
position itself as a graphical modelling lan-
guage. The last SDL version, SDL'2000, inte-
grated the UML class diagram and paved the
way to merge with the next major version of
UML under discussion at the time: UML 2.0.

The main objective of this new version of UML
is to support the MDA (model driven architec-
ture) approach in order to define specific pro-
files for each application domain. It is already
possible to evaluate the status of these lan-
guages.

On the SDL side, despite the initial commit-
ment of the different tool vendors, the latest
version of the language has not been imple-
mented in any tool. Generally speaking, the
move towards UML – meaning less precision –
did not seduce SDL users because of its com-
plexity. The SDL Forum has actually initiated a
task force to define a sub-set of SDL to simpli-
fy the language, and is – on the other hand –
working at defining a UML profile based on
SDL. In the field, SDL users are still working
with the '96 version of the language.

Version 2.0 of SDL-RT has integrated the class
diagram and the deployment diagram from
UML that complement the SDL representations
while keeping consistency between the different
views. The (still under validation) version 2 of
UML has integrated existing features from
SDL such as the block diagram into the struc-
tural diagram and the MSC into the sequence
diagram. It is also possible to define domain-
specific profiles but unfortunately there is no
standard real-time profile defined. Major indus-
trial companies actually doubt such a profile
will ever be standardized because of the conflict
of interests among the different editors who are
voting at the OMG.

Nevertheless the first UML 2 tools are already
available on the market but the initial objective
of the new standard to ease portability and
readability is missed since each editor has de-
fined its own proprietary profile. These profiles
are not public and tools rarely offer a profile ed-

Figure 2. MSC specification example

Interested in more information about 
SDL-RT, the combination of UML, SDL,
and C/C++?

Visit our specific website with links to:

�Technical documentation about SDL-RT 
�Details about Real Time Developer Studio
�Details about MSC Tracer
� Information about PragmaDev and its 

partners

Simply type-in Reader Service #: 587 at

Embedded-Control-Europe.com/know-how



itor, so in the end there are as many versions of
UML 2 as there are tool vendors on the market.
Users will definitely lose from that situation
making readability and portability more
difficult than before.

Whether the tools are based on SDL or UML,
editors had a prophetic attitude regarding their
language and spent a lot of energy to demon-
strate through seminars and advertisements
they were right. It worked out so well that it cre-
ated technical fanatics in the industry, so dazzled
by the prophecy that they would not hear
about any other technology. Technical reality
brought them back to reason, but at what cost?
More thoughtful, such as SDL-RT, are propos-
ing pragmatic solutions inspired by the usage in

the industry and wishes from the final users
without ignoring the current trends. That is
why they gather some UML diagrams, most of
the SDL diagrams, and the classical program-
ming languages such as C and C++ within a
consistent framework. The objective is to offer
all the benefits of the different languages for the
real-time and embedded domain without their
drawbacks. The diagrams are stored in a pub-
lic XML format in order to be able to re-use the
information without any specialised tool. Apart
from the language it is, of course, the quality of
the tool that will convince the end users since
the objective of a development team is not to
conform to a standard but to efficiently pro-
duce software with the best level of quality and
performance. �

Figure 3. Version 2.0 of SDL-RT gathers UML diagrams and ensures consistence


